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Droplet theory for Ising-like systems: two-loop results 

B Schmittmann 
Department of Physics, University of Edinburgh, Edinburgh EH9 352, UK 

Received 2 June 1983 

Abstract. A droplet theory for Ising-like systems valid in low spatial dimension can be 
formulated in terms of a surface tension Hamiltonian. We present an explicit two-loop 
calculation of the partition function for a single non-spherical droplet of one phase in a 
background of the other phase. The resulting p-function for the spherical interface is 
found to agree with the p-function of the planar interface. Corrections to the one-loop 
results are discussed. 

1. Introduction 

Droplet models are well known to provide essential insight into the physics of systems 
with coexisting phases. The ‘classical’ picture dates back as far as Becker and Doring 
(1935) and Cahn and Hilliard (1958, 1959): a review of these models and their 
refinements as well as further discussion can be found in Binder and Stauffer (1976). 

More recently, a good picture has emerged for the subcritical region of the 
coexistence curve. There, the droplet theories of Andreev (1963) and Fisher (1967) 
were found capable of predicting an essential singularity of the free energy. Although 
this singularity is too weak to be experimentally observable, as was pointed out by 
Langer (1967), it is of considerable conceptual significance. It originates from the 
contributions of droplets which are large compared with the bulk correlation length 
5. Now large droplets are rather simple, because they are essentially spherical and 
occur with low probability, thus allowing for a dilute gas approximation. Further 
references are given in the reviews by Widom (1972), Domb (1976) and Binder (1976). 

Within the critical region, however, the situation is far more complicated. Here, 
dropiets of all scale sizes become important. Small droplets which now have to be 
considered are not necessarily spherical. One therefore has to include shape 
fluctuations. Also the dilute gas approximation becomes unjustified; in particular, as 
one encounters the phenomenon of droplet nesting, small droplets will sit inside larger 
droplets which are themselves embedded in even larger droplets. This typical scaling 
picture was recognised by Kadanoff (1976). 

A theory incorporating these two features-droplet shape fluctuations and nesting- 
was proposed by Bruce and Wallace (1981, 1983, hereafter referred to as RW) for 
Ising-type systems in d = 1 + E dimensions. Their approach is based on a Hamiltonian 
given by the surface energy of a single non-spherical droplet of one phase in a 
background of the other phase. One can show by renormalisation group arguments 
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that the partition function for such single droplet configurations gives the free energy 
of a multi-droplet ensemble, provided that the droplet surfaces are sufficiently dilute. 
This assumption can be justified in low spatial dimension. 

The study of almost spherical surfaces is closely related to previous investigations 
of almost planar interfaces (Wallace and Zia 1979). In both cases, the critical behaviour 
of the interface is determined by large momentum, or, respectively, large angular 
momentum contributions, i.e. by short wavelength fluctuations. Consequently, noting 
that an almost spherical interface is locally indistinguishable from an almost flat 
interface, identical critical properties of the two models do not come as a surprise. In 
fact, both are designed to be representatives of the Ising universality class. 

On this basis BW assumed that the two-loop @-function of the spherical interface 
would be identical to the corresponding @-function of the planar interface. In the 
absence of an explicit two-loop calculation for the spherical interface they had to use 
the planar result instead. This was necessary as only the two-loop P-function yields 
the correct one-loop amplitude for the partition function. 

The present work closes this gap by giving the explicit two-loop renormalisation 
for the spherical interface. The assumption of BW is proved to be correct: the universal 
parts of the two P-functions do agree up to and including two-loop contributions. 

Another motivation for this calculation lies in the observation that the study of 
two-loop graphs may reveal new structural features which remain invisible at the 
one-loop level. We shall indeed get a rather good picture of how divergences arise in 
this theory. 

Furthermore, we obtain corrections to the partition function. In the limit of small 
scale sizes, this determines corrections to the exponent ratio @/v. Naturally, this is 
rather of conceptual significance; one cannot expect that an extension of the results 
to two dimensions is very reliable numerically. 

Technically the calculation will be interesting for a number of reasons. The 
expression for the surface of a non-spherical droplet (Giinther et a1 1980) involves 
angular momentum operators acting on a field which describes the deviation of the 
droplet from a spherical reference shape. It will therefore be convenient to expand 
the field in the eigenfunctions of the differential operator, i.e. in spherical harmonic 
functions. Associated with the shape fluctuations of the droplet are ultraviolet divergen- 
ces which can be controlled in 1 + ~  dimensions. An elegant way to do so is the 
dimensional regularisation scheme proposed by 't Hooft and Veltman ('t Hooft and 
Veltman 1972, 't Hooft 1973), conventionally followed by renormalisation through 
minimal subtraction. Thus emerges the need for generalised spherical harmonics, i.e. 
functions which are homogeneous solutions of Laplace's equation in general dimension. 

Techniques similar to the ones described in this paper were used by various authors. 
We mention only a selection: Drummond ( 1  975) discusses dimensional regularisation 
on the sphere for 44 and 43 theories. McKane and Wallace (1978) and Drummond 
and Shore (1979) investigate 44 instantons in dimensional regularisation and are also 
led to a spherical formulation. These papers also contain further references. 

In order to obtain the full two-loop expression, the partition function has to be 
evaluated up to and including O ( E )  and O( To) terms in a double expansion with respect 
to E and the coupling To. 

Section 2 will deal with the O ( E )  terms. They are obtained by performing the 
functional integral over the quadratic part of the Hamiltonian, neglecting O( E * ) .  This 
is very closely related to the one-loop calculation by BW. The reader should therefore 
refer to their 1983 paper for a more detailed discussion. 



Droplet theory for Ising-like systems: two-loop results 405 

In 8 3 we shall evaluate the O( To) contributions. To do so, we have to include 
interactions and analyse the possible two-loop graphs. 

In 9 4, we present the renormalisation and derive the p-function. We shall also 
discuss the corrections to the small R-limit of the partition function and its consequen- 
ces. We conclude with a short summary of our results. 

2. Gaussian contributions 

The Ising-type droplet model is specified as follows. A ‘droplet’ is a connected volume 
of ‘white’ phase, say, in a background of ‘black’ phase. It is characterised by a certain 
scale size R, and its deviation from spherical in direction q is measured by a field f(q).  

The energy of this ‘single droplet configuration’ is simply the surface area of the 
droplet (L,f = xi a/axj - x j  a / a x i ) :  

1 
TO 

X=- 1 d n  ( R  + f)d-’[l + + ( L i j f ) 2 ( ~  +f)-2]1/2 

Our task is to evaluate the single droplet partition function 

z,= ~ f e - q ’ l  I 
up to and including two-loop contributions. After expanding the field in spherical 
harmonics 

and change of variables in the functional integral, (2.2) takes the form (see BW for a 
discussion of the measure) 

(2.4) 

To extract the quadratic part 5Yo from the Hamiltonian, we expand 5Y for f / R  << 1 
and find after partial integration ( E  = d - 1) 

5 Y o = $  d n  ( R ‘ - 2 / T o ) f [ ~ ( ~ - 1 ) - - ~ 2 ] f .  (2.5) I 
With the eigenvalue equation for the spherical harmonics 

L2 Yp (q) = -21(I+ d -  2) Yp (9) 

G ( I ) =  T,R’- ‘ / [E(E - 1 ) +  1(1+ E - l)]. 

(2.6) 

this gives the free propagator in angular momentum space: 

(2.7) 

Obviously, if d = 1 + E and E + 0, the 1 = 0 and I = 1 modes would cause G( I )  to diverge 
and thus make a small E expansion impossible. This problem can be overcome by 
excluding these modes from an expansion of f in spherical harmonics. To do so, one 
has to introduce collective coordinates. The I = 0 mode, related to the ‘breathing’ of 
the droplet, can be absorbed into its scale size. This replaces the integration over aoo 
by an integration over all scale sizes. The Jacobian of the transformation is simply a 
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numerical factor. The 1 = 1 mode describes rigid translations of the droplet. Its 
exclusion gives us an integral over all possible positions x, of the droplet centre instead 
of the integral over ala,  and a non-trivial determinant: 

Thus we are left with 

where now 

Z1 = Sa2 (2) d'2 I dR $, dxi e-aPA 
I, a 

1 3 2  

( 2 . 9 ~ )  

With the Hamiltonian (2.1) and the propagator (2.6) an expansion in powers of To is 
an expansion in the number of loops. More precisely, the quadratic part of %' gives 
rise to corrections which are O(1) in To and the interaction terms yield the higher To 
orders. The quadratic part of the determinant, however, carries one To power more 
than Zo and therefore contributes to the O(T,) corrections. Consequently in (2.8) 
we may safely neglect all higher-order contributions. In the following we shall evaluate 
the Gaussian part of our functional integral, keeping all O ( E )  and O( To) corrections 
which arise at this stage. The treatment of the interaction terms will be postponed 
until § 3. 

With the expansion ( 2 . 9 ~ )  Xo takes the form 

(2.10) 
I 3 2  

Further, (2.8) can be simplified if one recognises that only the I = 2 modes of the field 
contribute to the integral. This can be seen by considering a particular representation 
of the spherical harmonics of degree 2: 

y ;  ( 1 7 )  = 4;)77,77, (2.11) 

where U:;' is a symmetric traceless tensor of rank 2. Note that this kind of representa- 
tion is of course not limited to the case 1 = 2. 

The orthonormality of the Y; 's gives us the relation 

u p u g ' )  = [d (d  +2)/2SdlS,,~. (2.12) 
This result is sufficient for the subsequent calculations; an explicit basis is not required. 

After inserting (2.11) into ( 2 . 9 ~ )  and ( 2 . 9 ~ )  into (2.8), using (2.12), one finds 

(2.13) A = exp[-d3/SdR2(d + 2)]a:,. 

Hence the evaluation of the Gaussian integral amounts to performing the sum 

(2.14) 
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where v , ( d )  denotes the degeneracy of the spherical harmonics of degree 1 in d 
dimensions: 

( d -  1 )  (21 + d - 2 ) r ( 1 +  d - 2 )  
r ( i+ 1 )  

v , ( d )  =- 
U d )  

Rearranging (2 .14)  yields 

(2 .15 )  

(2 .16 )  

We find that the corrections from the determinant, i.e. the second term in (2 .16 ) ,  are 
not only O( To) but also pick up a factor E from v 2 ( d ) .  This means that one can neglect 
them in a two-loop calculation. So finally we have 

(2 .17 )  
2.5 R E - 2  

I; = - ( d +  1 )  In - 2aTO +2(f-yi) T(d) - T ( ~ ) C + O ( E ’ ,  &TO).  

Here, y1 and C are constants given by 

2 
and 

In 1 c = c  -- - 0 . 2 3 4 6 . ,  . . 
1=2 f( I 2  - 1 )  

( 2 .18a)  

(2 .18 b)  

Hence, we have as resulting expression for the partition function at this stage 

Some remarks are in order. The first term in the exponential is the classical contribution 
which is caused by purely spherical droplets of radius R. It is followed by the corrections 
due to shape fluctuations. The one-loop corrections show a 1 /  E divergence. To remove 
this singularity, one has to renormalise the dimensionless expansion parameter TOR-‘. 
This will be discussed in 0 4 .  We also get the first higher-order corrections, but they 
are simply of O ( E ) .  In § 3 ,  we shall look at the more interesting contributions from 
interaction terms. 

3. Two-loop graphs 

3.1. Preliminaries 

An inspection of the Hamiltonian (2 .1 )  shows that we shall have to deal with cubic 
and quartic interactions, with and without derivatives. Hence there exist three distinct 
two-loop graphs for the partition function: the ‘figure of eight’, the ‘London Transport’ 
and the ‘dumbbell’ graph (figures l ( a ) - (  c)). 
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IC1 

Figure 1. Two-loop graphs for the single droplet partition function. 

In order to specify what an internal line or a vertex stands for we note the following. 
The standard Wick expansion for non-derivative interactions may be generalised to 
include derivative interactions. Thus all averages consisting of complicated products 
of fields and their derivatives can be split up into three basic contractions: 

(3 . l a )  

(3.lb) 

( 3 . 1 ~ )  

Now let us consider a vertex produced by an interaction gfm[(Lijf)2]". Of the 2n + m 
legs emanating from the vertex, m are labelled by spherical harmonics Yc1, YP,', . . . 
whereas the remaining 2n are labelled by L,Yf;,  L ,Y f ; ,  LwYf:, . . . . Then ( 3 . 1 ~ )  
gives the propagator for a line connecting two 'non-derivative' legs. The other two 
equations denote the contractions of a non-derivative and a derivative and two 
derivative legs, respectively. The vertex itself carries a factor g, and there are also the 
normal combinatoric factors. 

Let us now look at the various contributions. 

3.2. Quartic interactions 

From an expansion of 2 for small f we obtain three different quartic interactions: 

The 'figure of eight' represents the average of Xfn",' with respect to ZO: 

To demonstrate the principle, it will be sufficient to discuss the first term on the 
right-hand side of (3.2) in some detail. From the Wick expansion we find 

(( Lijf) * ( ~ p q f )  *) = (( Lijf)2>2 + 2 ( ~ i j f ~ p q f ) ~ .  (3.4) 
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According to (3.1 c), the first contribution on the right-hand side translates into 

/ dR((Lijf)2)2=(ToR2-E 
1 3 2 . 0  k a 2 , P  

X LijYP (?)LijYB ( 9 )  LpqYt ( ~ l ) L w Y t  ( v )  
l ( l +  E - 1) + & ( E  - 1 )  k ( k  + E - 1 )  + E ( &  - 1 )  

Y f k ( k +  E -1) Y f  
k ( k  + E - 1) + E ( &  - 1) 

X (3.5) 

after integrating by parts and exploiting the eigenvalue equation (2.6). 

for spherical harmonics (see e.g. Erd6lyi 1953): 
The sums over CY and /3 can now be performed with the help of the addition theorem 

Here Cjd-2”2 ( t )  denotes the Gegenbauer (or ultraspherical) polynomial of degree 1 
and order &( d - 2). The normalisation of the Gegenbauers is such that 

c: ( 1 )  = T ( I + ~ A ) / T ( ~ A ) T ( I +  1 )  ( A  # 0). 

Inserting this into (3.5) with r) = r)’ and performing the now trivial integration over 
dR yields 

2 I d f l ( ( ~ 5 ~ ~ f ) ~ ) ~ = 4 ( T , , R ~ - ‘ ) ~ & ~ [  1 3 2  v l ( d ) ]  +O(&Ti ) .  (3.7) 

The sum over degeneracies is easily evaluated (see BW), so finally, 

dR ( (L , , f )2)2  =4(  ToR2-‘)2Sd’ ( d  + 1 ) 2  + O( ET; ). (3.8) 

Note that this expression is O(1) in E. 

An attempt to calculate the second term in (3.4) in the same way fails, because 
identical angular momentum operators act on spherical harmonics of different degree. 
Thus it is not possible to generate a form similar to (3.5) by straightforward partial 
integration. However, one can make use of the symmetry properties of (L,fL,f). 
Averaging over all field configurations naturally eliminates all dependence on f, but 
the tensorial structure of the indices i ,  j and p,  q is preserved: the result has to be 
antisymmetric under interchange of i and j ,  or p and q ;  and symmetric under the 
interchange of the pairs ( i ,  j )  and ( p ,  4). Accordingly, it must be of the form 

(3.9) 
In order to determine the coefficients A and B, we apply (3.9) to two particular 
contractions, namely: 

(4,f(Tt)bqf(r))) = A(SiPS14 - &q&) + B ( T I T p ~ , q  - 71,TpSq - 81Tq8,p + T,71q6p) .  

((L,,f( r) )I2)  = ( d  - 1 ) ( dA + 2B) and vr Tk (&f( r))Lk)f( r) 1) = ( d  - 1 )  ( A  + B ) *  
Moreover, inserting the definition of L,,, one finds 

T i T k ( L t , f L k , f )  = f ( ( L i , f ) 2 > .  
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(3.10) 

(3.11) 

This result is crucial: it exposes the kind of structure which leads to divergences in 
our theory. The simple contraction (3.8) is O(1) in E ,  whereas one picks up a factor 
E - *  from the 'mixed' contraction (3.11). Geqerally speaking divergences in more 
complicated graphs arise from the tensorial structure of contractions analogous to 
(3.11). 

In the theory of the planar interface, the source of the divergences is similar. The 
planar analogue of (L i j (  v)L,f( q ) ) 2  is the contraction ((a/a~~)f(x)(a/ax,)f(x))~. Here, 
x is a ( d -  1)-dimensional vector in the reference plane, and f ( x )  is the deviation from 
planar in this point. The propagator is given by G(q2)  = ( q 2 +  m2)-l (see Wallace and 
Zia 1979, for details). 

With the relation 

the planar analogue of (3.1 1) is 

It is easy to show that jdd-'q2 G(q2)  is 0 (1 ) ,  so that we recover exactly the same 
structure as in (3.11). 

Back to the spherical interface. With (3.7) and (3.11), (3.4) finally takes the form 

(3.12) 

where we have included the prefactor from (3.2). 
The other two contributions to the 'figure of eight' can now be dealt with more 

quickly. Following the same strategy as before, the second term in (3.2) can be written 
as 

It does not present any difficulties to show that the second sum in (3.13) is O ( E ) ,  such 
that the whole expression is O(TO&) and can be safely neglected at two-loop level. 
The same statement is true for the third contribution in (3.2) which, apart from 
prefactors, can be written as the square of the second sum in (3.13) and is therefore 
O( E To). 

Thus we have derived the total contribution from the 'figure of eight' graph: 

( 8;;) = - ( TOR -'/ s d )  ( 1 / E + f) + o( E To). (3.14) 

Its significance will be exploited once the cubic interactions have been discussed. 
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3.3. Cubic interactions 

We have to discuss two types of cubic interaction: 

(3.15) 

Trivially, the average over an odd number of fields with respect to a quadratic 
Hamiltonian is zero. However, the square of X$) does give a contribution. It will be 
represented by the London Transport or the dumbbell graph depending on how the 
internal legs are connected. 

Let us investigate the dumbbell graph first, with an f 3  interaction on both vertices. 
Recalling G(1) from (2.7), the corresponding sum reads, up to various prefactors, 

= O  (3.16) 

because the k = 0 mode has been excluded and 

(3.17) 

A derivative interaction f2L2f on one or both of the two vertices does not change 
the reasoning behind (3.16): the operator L2 acting on a spherical harmonic simply 
generates its eigenvalue as additional factor in the numerator. This does not influence 
the integration over dR and dR’; hence these contributions vanish as well. 

This result can be understood as follows: angular momentum conservation only 
allows for 1 = 0 on the line connecting the two vertices. But the zero mode has been 
excluded from all sums, and thus the contribution from this graph vanishes altogether. 

Finally, we consider the London Transport graph with two f ’  interactions. All 
three internal lines start at one vertex and end at the other; thus we get the sum 

(3.18) 

where A = 4 ( d - 2 )  and we have used (3.6). 
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The integral occurring in (3.18) was evaluated by Hsu (1938): 

J-+'' C: ( t )  C; (t) Ck ( t ) (  1 - t2)h-1/2 dt  

where 

2s = 1 3. k + p and 

if 1 + k + p  is even and I ,  k,  p can form the sides of a triangle, 
otherwise. (3.20) 

In three dimensions, equation (3.20) is familiar from quantum mechanics: it describes 
how two orbital angular momenta k,  1 couple to give a third, p .  The prefactors in 
(3.19) are essentially the corresponding Clebsch-Gordan coefficients. 

It appears impracticable to evaluate Z exactly from (3.18)-(3.20). However, this 
is not necessary. To extract the E dependence it is sufficient to consider (3.18) in the 
limit of large 1, k and p .  For large 1 we have the following: 

A(/, k,  PI' 

G(1) 

v / ( d ) / S d = S , - , l ' - ' [ l + O ( & ,  l - ' ,  . 9 .)I7 

ToR2-'1-2[1 +O(E ,  l - ' ,  . . .)I, 
(3.21) 

r(r+a)/r(i+p) = ru-P[i+t(CY-p)(ff + p - 1 ) / i + o ( r 2 ) ] .  

Inserting (3.21) into (3.18) and (3.19) one finds after a bit of algebra: 

k s 2  
p s 2  

X ( lkp)'-2A[S( s - I ) (  s - k ) (  s -p)]"-'A( 1, k,  p ) .  (3.22) 

Here, corrections of O ( E )  or O( l - ' ,  p - ' ,  k - ' )  have been neglected. We shall soon see 
that this is justified. 

We shall now proceed as follows. Firstly, the sums in (3.22) will be replaced by 
integrals. This is a reasonable approximation for large values of 1, k and p.  Secondly, 
instead of working on the sphere, we investigate the London Transport graph in 
( d  - 1) -dimensional Euclidean space where 

and 

G(q)  = Toq-2. (3.23) 

The infrared cut-off A has been introduced in order to avoid infrared divergences. 
This corresponds to the exclusion of the 1 = 0 and 1 = 1 modes in the spherical theory. 
We shall show that the London Transport graph in Euclidean formulation can also be 
cast in the form (3.22), with the sums replaced by integrals. Hence we can approximate 
(3.18) by its counterpart in Euclidean space. Physically this means that for large 
angular momenta the spherical interface behaves essentially like a planar interface. 
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Thirdly, we find the E dependence of (3.18) by evaluating the planar expression 

Replacing the sums by integrals, (3.22) becomes 
using standard techniques. 

s d  

47T 
dl  le-'  d k k"-' [ dp  pEP1 G (  1 )  G (  k )  G(  p ) (  lkp) 1-2A LA IPl>A 

I; = -- sd-1  

x [S (S  - I ) ( s  - k)(s- p)J-'A(l, k, p ) .  (3.24) 

1, k and p can now take on non-integer values as well. In the definition (3.20) of 
A( 1, k, p) we therefore keep only the triangle condition, and we drop the requirement 
that the sum of 1, k and p has to be even. 

In Euclidean space, the London Transport graph corresponds to 

x exp[i(p+ k+ l ) ( x - x ' ) l  

x G(OG(k)G(p) .  (3.25) 

Instead of integrating over x first, we begin by integrating over the angular parts of 
I, k and p. This leads to the Poisson integral (ErdClyi 1953): 

where JA-l/Z(qx) is a Bessel function of order A -$. 
Now the resulting integral over x can be performed. Its angular part is trivial, hence 

3/2- A 
s d  - 1 [ dx JA - 1 / 2 ( 1x1 JA - 1 / 2( kx ) JA - 1 / 2 ( p x )  

where again 

1 if 1, k, p form the sides of a triangle, 
A(l ,k,p)=(,  otherwise, 

and A is the area of the triangle formed by 1, 
If the perimeter of the triangle is given by 

A = [S (S  - I ) ( s  - k)(s -p)]"' 

so finally 

k and p (Watson 1922). 
2s, one has 

~ ( l k p ) ' - ~ ~ [ ~ ( s - l ) ( S -  k ) (~ -p ) ]~ - 'A( / ,  k , p ) .  

which agrees up to a trivial prefactor of O(1) with (3.24) 

(3.27) 

(3.28) 
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It is now obvious that (3.28) and (3.25) must have the same &-dependence. 
Also, in the case that we have an fzL2f interaction on one or both of the two 

LZYB(q)=-212Yp(q)  (3.29) 

vertices, we note that for large 1 

which has to be replaced by 
v 2  eiqx = - 4 2  eiqx (3.30) 

i.e. an interaction f2V2f, in the planar formulation; and again we derive the required 
correspondence between the two versions. 

It is straightforward to calculate the London Transport graph in the planar version 
with interactions f' or f'V'f. Recalling that the whole graph carries a factor To, we 
find that it is at most O(&TO),  and the corrections neglected in (3.22) were even higher 
order. 

This concludes the discussion of two-loop graphs. We have found only one contribu- 
tion to the two-loop partition function, arising from the figure of eight. This contribu- 
tion exponentiates according to the well known theorem for connected vacuum graphs. 
Hence, with (2.19) and (3.14), the full two-loop partition function reads: 

X [ 1 + O( E' ,  &To, T i  )I. (3.31) 

This result is unsatisfactory for two reasons. Firstly, for E + 0, the effective expansion 
parameter TOR-' becomes unboundedly large for R + 0. This means that we cannot 
handle small droplets on the basis of (3.31) although we know that they are important 
close to the critical point. Secondly, the &divergences in the exponential have to be 
removed. In 0 4 we shall see that the renormalisation of (3.31) takes care of both 
problems. 

4. Renormalisation 

We adopt a minimal subtraction scheme: the renormalised coupling T is defined as a 
power series in the bare dimensionless coupling TOR-' such that the coefficients are 
pure poles in E only and absorb all the divergences. Hence we write 

[TOR-']--] = T-' + a + bT + O( T 2 )  (4.1) 
and insert this into the partition function (3.31). 

Comparing orders in T one finds that in order to subtract the divergences one needs 

a = - l /&,  b =  -1/4&. (4.2) 
Note that the prefactor (TOR-')  in front of the exponential in (3.31) is now essential 
for the renormalisation, whereas it did not contribute at the one-loop level. 

Inserting (4.2) into (4.1) and inverting the expression yields 

T,R- = T+ ( I /&)  T ~ +  ( 1 1 4 ~  + 1 / 2 )  T ~ + o (  T ~ ) .  (4.3) 
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This gives the p-function 

P ( T ) = R  ~ T / ~ R ( , = - & T + T ~ + ~ T ~ + O ( T ~ )  (4.4) 

and this result is indeed identical with the p-function of the planar interface. Hence 
we confirm the assumption made by BW and close the loophole in their work. 

The renormalisation equation (4.4) has two fixed points: T = 0 which is infrared 
stable: T + 0 as R + CO; and T,= E -&'+O(e3) which is ultraviolet stable: T + T, as 
R + 0. The existence of the second fixed point solves the first problem mentioned with 
respect to (3.31). If now R +O, the renormalised coupling T approaches the finite 
value T,. 

The second problem, concerned with the singularities in E occurring in (3.31) is 
also solved by the renormalisation of TOR-' as can be seen by inserting (4.3) into (3.31): 

z, = ( ' d / 2 a ) ( d + 1 ) / 2 d - d / 2 v  dR R-(d+l)T-(E+2)/2 I 
+ i T + E ( C + 2 Y I )  [l+O(E', ET, T')]. (4.5) ) 

Here the integration over x has been carried out to give the total available volume 
V. It is obvious that the &divergences in the exponential cancel. Let us now introduce 
the correlation length 5 as the R-independent length scale of the theory: 

hence 

T(R)[l-T(R)/T,]-""[l +O(ET) ]=  Co(t/R)' (4.7) 

v - l = p y ~ c ) =  E + 4 E 2 + ~ ( E 3 )  (4.8) 

where 

and CO is an integration constant. 

can be written in the form 
Clearly, T ( R )  only depends on the ratio ( R / t ) ,  and therefore the partition function 

where 

+ $ T ( R ) + & ( C + 2 y l )  [ ~ + O ( E ' ,  E T ( R ) ,  T z ( R ) ) l .  I (4.10) 
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The function $ ( R / ( )  plays an important role for the construction of the multi-droplet 
ensemble as was discussed in detail by BW. 

In particular, its limit for small arguments 

determines essential physical quantities: for example, the magnetisation exponent @ 
is given by p = 2 $ o ~ ;  or, more generally, in the droplet formulation of the q-state 
Potts model (Schmittmann 1982) one has @ = q&,v. 

Also, the critical droplet density pc is proportional to the parameter (clo whose 
smallness therefore controls the validity of the dilute surfaces approximation made by 

In order to obtain an expression for cL0, we recall that if R/[+O the renormalised 
temperature T ( R )  approaches T,, hence $o is given by expression (4.10), but with 
T ( R )  replaced by T,. 

Naively, one would assume that by inserting the one-loop expression for T, one 
would get a correct one-loop expression for $O. However, in order to obtain the 
exponential correct to O( 1)  one needs the O( E ’ )  corrections in T,. This is a reflection 
of the fact that the first term in the coupling constant expansion is proportional to T-’. 

By giving the correct two-loop renormalisation of the single droplet partition 
function we have amended this shortfall of the one-loop calculation, and the parameter 
Clr0, to one loop, is given by 

BW. 

+o = (2/ a) E - ( ‘ + ’ ) ’ ~  exp(- 1 - 2 y - 2/ E )  (4.12) 

where y is Euler’s constant. 

temperature renormalisation is required to three loops etc. 
One should note, however, that in order to get the two-loop expression for t,h0 the 

To conclude let us summarise our results. 
As the source of divergences in two-loop graphs we identified contractions of 

different angular momentum operators as opposed to contractions of one angular 
momentum operator with itself. The tensorial character of these mixed contractions 
produces the singularities in E which then have to be renormalised. We expect these 
features to be essential for higher-order graphs also. 

Similar tensorial contractions can be found in the corresponding graphs for the 
planar interface, and there are apparent analogies between the two theories which 
persist even in calculational details. 

As a consequence of the close relationship between the planar and the spherical 
interface we find the same two-loop @-function for both theories, hence also the same 
critical temperature T, and the same correlation length exponent U. Thus the assump- 
tion of BW is made redundant, and the discussion of single and multi-droplet properties 
is put on a more systematic footing. 

Acknowledgments 

I am very grateful to D J Wallace, A D Bruce and A J McKane for many helpful 
discussions. I also thank the University of Edinburgh and the Studienstiftung des 
deutschen Volkes for financial support. 



Droplet theory for Ising-like systems: two-loop results 417 

References 

Andreev A F 1963 Zh. Eksp. Teor. Fiz. 45 2064 (transl. 1964 Sou. Phys.-JETP 18 1415) 
Becker R and Doring W 1935 Ann. Phys., Lpz 24 719 
Binder K 1976 Ann. Phys., N Y  98 390 
Binder K and Stauffer D 1976 Ado. Phys. 25 343 
Bruce A D and Wallace D J 1981 Phys. Rev. Lett. 47 1754 
- 1983 J. Phys. A: Math. Gen. 16 1721 
Cahn J W and Hilliard J E 1958 J. Chem. Phys. 28 258 
- 1959 J. Chem. Phys. 31 688 
Domb C 1976 J. Phys. A: Math. Gen. 9 283 
Drummond I T 1975 Nucl. Phys. B 94 115 
Drummond I T and Shore G M 1979 Ann. Phys., N Y  121 204 
Erdtlyi A (ed) 1953 Higher Transcendental Functions vol 1 and 2 (New York: McGraw-Hill) 
Fisher M E 1967 Physics 3 255 
Gunther N J ,  Nicole D A and Wallace D J 1980 J. Phys. A: Math. Gen. 13 1755 
Hsu H Y 1938 Duke Math. J.  IV 374 
Kadanoff L P 1976 in Phase Transitions and Critical Phenomena ed C Domb and M S Green vol Va (New 

Langer J S 1967 Ann. Phys., N Y  41 108 
McKane A J and Wallace D J 1978 J. Phys. A: Math. Gen. 11 2285 
Schmittmann B 1982 J. Phys. A: Math. Gen. 15 3571 
't Hooft G 1973 Nucl. Phys. B 61 455 
't Hooft G and Veltman M 1972 Nucl. Phys. B 44 189 
Wallace D J and Zia R K P 1979 Phys. Rev. Lett. 43 808 
Watson G N 1922 A treatise on the theory of Bessel functions (Cambridge: CUP) (2nd edn 1944) 
Widom B 1972 in Phase Transitions and Critical Phenomena ed C Domb and M S Green, vol I1 (New York: 

York: Academic) 

Academic) 


